Lydall is Chosen as Cryogenic Insulation Supplier for ITER Project

Lydall Performance Materials, a segment of Lydall, Inc. (NYSE: LDL), grows its leadership in cryogenics with the recent partnership with Air Liquide, a world leader in extreme cryogenics and a major industrial partner of the ITER project, for the supply of cryogenic insulation for the cryogenic lines designed and manufactured by Air Liquide.

ITER is a research facility that was set up to demonstrate that a fusion reactor can produce ten times more energy than it consumes. To this end, the ITER organization which is comprised of seven international partners—the United States, China, South Korea, the European Union, India, Japan and Russia—is building an experimental reactor (or tokamak) which is exploring the parameters of fusion. To obtain the very powerful electromagnetic fields required to confine and stabilize the fusion, it is necessary to use superconducting magnets that only function at extremely low temperatures.

The new cryogenic lines designed and manufactured by Air Liquide for ITER-India are one vital component of the project’s cryogenic production system. These lines will transport helium at extremely low temperatures close to absolute zero in some cases (-269°C). The fabrication of these lines requires the use of high tech processes and sophisticated design intended to link up the cryogenic plant to the tokamak. The cryogenic lines designed by Air Liquide represent a 1.6km network that will distribute the cold power needed to run various ITER equipment.

Lydall’s CryoTherm® and double aluminized polyester film were selected because the products met the demanding requirements of the cryogenic lines and the ITER project. Chosen for high performance, high quality and consistent, stable supply, Lydall cryogenic insulation products provide one of the most efficient thermal protection solutions for liquefied gases. In the ITER project, storage and transfer of these gases is essential, and Lydall’s products prevent evaporation loss that could occur with a lesser quality insulation.

The Air Liquide and Lydall partnership goes back for decades. In fact, Air Liquide completed the large scale cryogenic installation for the CERN¹ with cryogenic insulation supply from Lydall’s portfolio. Anatoli Kogan, Lydall Performance Materials Cryogenic Market Manager, commented, “We are proud to be a long-time supplier of Air Liquide and be a part of another massive project with them. We value Air Liquide as a cryogenic partner and look forward to continuing to serve them for years to come.”

Lydall Performance Materials has long been a quality supplier of high performance cryogenic insulation products to global cryogenic equipment manufacturers. Industry recognized products such as CryoTherm, CRS Wrap® and Cryo-Lite® insulation have been used to insulate a multitude of different tank sizes ranging from small portable O2 dewars to large liquid industrial
gases and LNG transport and storage units, as well as transport piping in industrial process applications.

For further information about Lydall’s cryogenic insulation products, please contact Anatoli Kogan, Lydall Performance Materials Cryogenic Market Manager, at +1 518-880-1959 or akogan@lydall.com.

About Lydall, Inc.
Lydall, Inc. is a New York Stock Exchange listed company, headquartered in Manchester, Connecticut with global manufacturing operations producing specialty engineered products for the thermal/acoustical and filtration/separation markets. For more information, visit http://www.lydall.com.

About ITER
ITER (“The Way” in Latin) is one of the most ambitious energy projects in the world today. In southern France, 35 nations are collaborating to build the world’s largest tokamak, a magnetic fusion device that has been designed to prove the feasibility of fusion as a large-scale and carbon-free source of energy based on the same principle that powers our sun and stars. The experimental campaign that will be carried out at ITER is crucial to advancing fusion science and preparing the way for the fusion power plants of tomorrow. ITER will be the first fusion device to produce net energy, to maintain fusion for long periods of time and to test the integrated technologies, materials and physics regimes necessary for the commercial production of fusion-based electricity.

¹ CERN (Conseil Européen pour la Recherche Nucléaire) is the European Organization for Nuclear Research.